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Periodic even degree spline interpolants of a function f at the knots are con-
sidered. Existence and uniqueness results are proved, and error bounds of the form
| f® — s, Lo, B2+ K| fE D)+ Var(f P+ )] (k=0,.., 2r) are obtained.
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1. INTRODUCTION

Let A= {x,}~, be a uniform partition of [a,b], a=x,< - <xy=b,
and x;=a+ih, where h=(b—a)/N. An even degree spline is a function
se C*~'[a,b] such that s restricted to [x;, x;,,] is a polynomial of
degree at most 2r. It is a periodic even degree spline if s*)(a) =s"®(b) (k=
0,.., 2r—1). In this paper we define a periodic even degree spline from its
nodal values s(x;) (i=0,..., N).

Nice error bounds have been established for periodic odd degree spline
interpolation (e.g., see Ahlbergetal. [2], B. Swartz {11, 12], Albasiny and
Hoskins [3], and recently, T. R. Lucas [10]). It appears that we can
obtain similar results for periodic even degree spline interpolation. In [7],
extending the results of Daniel [5] and de Boor [4], we have studied
periodic quadratic spline interpolation and showed that good results are
obtained when the partition is uniform. In [8] we have obtained similar
results for periodic quartic spline interpolation on a uniform partition. The
object of this paper is the study of periodic even degree spline interpolation
on a uniform partition. We show existence and uniqueness of periodic even
degree spline interpolants and obtain error bounds of the form

| F® —s®|  ~OhT+'k) (k=0,..., 2r).

These results are also extensions of those obtained by Meek [13].
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Throughout this paper we will use the following notations. If
g:[a,b]—R is a given function, we will write g,=g(x,), X, =
(Xt X0 1)/2 8ivy=8(Xis 1)), £© is the kth derivative of g, g% =g
and Var(g) is the total variation of g on [g, b]. We also consider the
following function spaces: C*[a, b], the spaces of functions with con-
tinuous derivatives through order %, Cf,f[a, b], the spaces of functions
f e C*[a, b], such that f(a)= f(b) for all I =0,..., k, and Z,, the space of
all polynomials of degree at most k.

2. ExisTENCE OF EVEN DEGREE PERIODIC SPLINES

As previously defined, on each interval [x;, x;,,] a periodic spline of
degree 2r can be written
2r

s(x)=Y, s

k=0

(x_xi)k

k! (1)

and our first step is to relate the quantities s*’ (k= 1,..,, 2r) to the quan-
tities s;. This is done by the following fundamental relationship, proved by
Fyfe [9, Theorem 1],

2r—1 (2r)k 2r—1

2 COsi= Y Chsiy (2)

/2r i+j =k
j=0 h Jj=0

for all k=1,.., 2r — 1, where (2r), = (2r)}}/(2r — k),
Cl=V¥*+lnr=%  when n=2r—j

for k=0,.,2r—1, V is the backward difference operator and z, =
(z + |z])/2. Finally, for k =2r we obtain directly from (1)

(2r—1) (2r—1)
S —$;
Sf_zr)z_'Lh_J.__ (3)

If we consider (2) for i= —r+1,..., N—r, and remember that indices
must be considered modulo N, we obtain the linear systems

2
csto=Ck e, @)

for all k=1,.., 2r — 1, where s = (s{©, s{°,..., s&) ) and C¥’ is a band cir-
culant matrix with nonzero elements in a general row consisting of

k k k (k (k)
C(O,Z)r’ C(1,2)r9"" C£)1,2r""5 C2rL 2,2r° C2r-— 1,2r

with the element C*) , on the diagonal.
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Using the properties of the coefficients of the matrix C{? (see the Appen-
dix), we can prove the following result.

THEOREM 1. Let 4= {x,}Y_, be a uniform partition of [a, b]. A periodic
spline of degree 2r is uniquely determined by its nodal values {s;}N-,! if and
only if N is odd. In this case

(2r) §
s =" (ECY) ™! ECYs,

where the matrix E of order N is

1 -1 1 - =1 1]
1 -! (5)
—1 :
\ |
1 -1
=5 D TR I N

and ECY) is a symmetric band circulant matrix of order N such that

by
il
N —

. 2r+2 (=1
1 < '
) Hoo\22r+l(22’+2—1) Bzr+2

(6)

I(ECE

where B, , , is a Bernoulli number (see Abramowitz and Stegun [1]). If N is
even, the spline does not exist or is not uniquely determined.

Proof. See Dubeau [6]. Q.ED.

3. DERIVATION OF ERROR BOUNDS

Given a function f€ C2"*'[a4, b] and a uniform partition 4 = {x,}¥ ,, N
odd, of the interval [a, b]. We consider the periodic spline interpolant s of
degree 2r of f such that s(x;)= f(x,). On each interval [x,, x,, ] the kth
derivative (0 <k <2r) of the remainder function e(x)= f(x)—s(x) can be
written

)I—k

e“(x) = i ef’ b + Ry, k(S x,)(x) (7)

= (I—k)
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where

(X€

R,(g a)(x)= g(¢) de.

The problem is then reduced to the study of the terms ().
Let us introduce the following compact notation

2r—1

otg= 3 CH &is
i=0
Hence (2) becomes

505) __(2}1’2" ot

for all k=1,.., 2r — 1. So, for the error function we obtain

(2r)

0% =80~ 01, 8)

We are now able to prove the following lemma.

LEMMA 1. Let N be an odd integer, A= {x;}~_, be a uniform partition of
{a,b] and fe C*'[a, b]. Then

(2")k

5?e(k)=5?R2r—k(f(2r+l); xi+r~(1/2)) 5kR (f(Z’H) Xigr— (1/2)) 9)

forall k=1,..,2r—1.
Proof. Consider the following Taylor expansions
FEX)=p®x)+ Ry o (f ¥ 5 x1, (1/2))(%) (10)
for all k=0,..., 2r — 1, where

(X —X;., (1/2))1_k

2r
(k) —_ (6))] -
pPx)=Y f9,_

o irr-am (I—k!)

Using the notation (A.1) of the Appendix, we have

2r
0,(k) _ ! I— k., (0
5.’?‘ )= Z fgir~(1/2)h ijk,zr

1=k
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and
2r
kp ! I (k
oip= Z fg-i)—r—(l/Z)h V},z)r
(=0

But from (A.2) and (A.3)

2
a9 = T (1)
and the result follows from (8), (10) and (11). Q.E.D.

In the next two theorems, we obtain bounds for the expressions
e+ e and e) —e*) . These bounds show us an interesting decom-
position of the bound for e!*).

THEOREM 2. Let N be an odd integer, 4 = {x,;}_, be a uniform partition
of [a,b] and f e Cf,’+ '[a, b]. Then there exist constants f,,, independent of
the partition, such that

e +e®) | < B b+ H | fEHI), (12)
forall i=0,.,N—1and k=1,.., 2r—1.

Proof. 1f we write (9) as a linear system
CRel=b,, (13)
where () = (e{), e{*),..., e%¥) ,) and b, is a N-vector whose components are
given by
(br,k)i:5?7r+le(k)’ (14)

and if we use the right-hand side of (9), we have

(br,k)i = 5?7” t R2rvk(f(2,+ b Xiy (1/2))

2r
(hk)k 6?—r+1R2r(f(2r+1);xi+(l/2)) (15)

forall i=0, 1,.., N— 1. So there exist constants a,,, independent of 4, such
that

1, 4ll oo St *1 5 || O+ D

640/44/1-4
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Now, since I=E(I+ P) and C{’'=ECQ(I+ P), where the matrix E is
given by (5) and P is the permutation matrix of order N

"O 1 7]
O
P= )
© 1
| 1 0
we obtain
(I+P)ef =(ECY) " b,y
and the result follows if we set f,, =a,, |(EC®) || .- Q.ED.

THEOREM 3. Let N be an odd integer, A = {x,}_, be a uniform partition
of [a, b], fe C¥*![a, b] with f**") of bounded variation. Then there exist
constants B, ,, independent of the partition, such that

lef®) —e®) || < B, b+ ~F Var(fr+Y) (16)
foralli=0,.,N—1andk=1,.,2r—1.

Proof. From the system (13) and the relation (/—P)ECY =
ECS,(I— P), it follows that

(I—P) e = (EC3,)~'(I— P) Eb,. (17)
But

(I-P)E=

and (14) imply

[U=P)Ebyli= 3 (=1)-180,, e (18)

J=it+1

for all i=0,.., N—1.
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Using the fact that the partition is uniform and introducing the tran-
slation operator (T; g)(x) = g(x + jh), we can easily show

611'(vr+lRm(g; xj+(l/2)) =5?7r+ lRm(Tj—ig; xi+(l/2)) (19)

for all k=0,...,2r—1.
Hence, setting g= /" * in (19) and using (15) and (18), we obtain

(2r)

2
[(I-P) Ebr,k]iz 6?~r+ 1Ry, k(s x1+(1/2)) —"Z'/(_k‘sf—rHRzr(‘//; xi+(1/2))
where
i+N—-1 )
lljz Z (_1)j~1T/__if(2r-+-l).
J=i+1
But

¥ ()| < Var(f+1)
so there exist constants «,,, independent of 4, such that
I(—P) Eb, il o S, B> '~ Var(f@+ 1) (20)

and the result follows from (17) and (20). Q.E.D.

It is now easy to obtain a global error bound for the remainder function.

THEOREM 4. Let N be an odd integer, 4= {x,;}_ be a uniform partition
of [a,b], fe Cx*'[a, b] with f**V of bounded variation. Then there exist
constants o,,, independent of the partition, such that

e oo S @B 1R fO | o + Var(f@+ D)} (21)
for all k=0,..., 2r.
Proof. Inequalities (12) and (16) imply

B r.k

||e£1k)||oo<_2_

h2r+1~k{”f(2r+l)“w+Var(f(2r+l))}. (22)
for k=1,.., 2r — 1. Moreover, from (3) it follows that

e('Zr‘l)_eEZr—l) 1 rxit1

K A S A UL

640/44/1-4 %
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and using (16) we obtain

h
€1 < Brar 1B Var(fE D)+ 51 f TPl (23)

The result then follows from (7), (22) and (23). QED.

Remark 1. From (9) it follows that the right-hand side of (8) is a linear
functional L, which vanishes for all p e &,. Thus we can use the Peano ker-
nel theorem (see Davis [14]) to obtain

b
5% = [ Ky(t) £+ V(1) dr
where

K (1) Ly [(x—10)%]

T

The notation L, ,[(x—7)*] means that the functional L, is applied to
(x—1)¥ considered as a function of x. Using the following change of
variable, = x,+ 0h, we get

2r—1
8%® = K+ 1=k [T Ry(0) £+ V(x, + Oh) d
0

where

_ 1 2r—1 2r—1
Kk(0)=(2r_k),[ Y COU-0%*— Y c;gg(j—a)z].

j=0 j=0
So, the constants a,, can be evaluated using the following expresion
2r—1
ti= | 1KO)] db

forall k=1,.. 2r—1.

Remark 2. Following Lemma 1 and using (A.2), (A.3) and (A4) we
can show that L, vanishes for all pe %, , , as long as k is even. In this case
we obtain

5% =" KA (1) £ (1) do
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where

KE(0) = gy Lo = 071, 24)

In this case, if we consider feC¥*2[a, b] with f**? of bounded
variation, we get

el < Bk 2 (L f& DY, + Var(£¥ D))

for all k=2,..., 2r — 2, and where ¥, can be evaluate using (6) and (24).

In [15], Dikshit, Sharma and Tzimbalario extend the results of Lucas
[10] to the case of even order periodic spline interpolation at midknots. In
the same way, our results could be extended to odd order periodic spline
interpolation at midknots.

APPENDIX: PROPERTIES OF THE COEFFICIENTS C{})

In this appendix, we recall the properties of the coefficients C{*) and
extend the last one.

PROPOSITION 1..  The coefficients C{%) have the following properties.

(i) C},’fa)ﬂ =(n+1-—j) C/(‘Ii)l,n

+U+1D)CY,  0<,j<n, 0<k<n—1,
and
[k
c=(-r(5) osysk

Since (¥)=(*7")+(“Z}) it follows that

k _ (k=1 k—1
C;(‘,k)+ 1= Cj('— l,k) - C,(',k ).

(ii) CH=(—1)C® 0<k<n—1.

n—1-—jns

n—1
(i) Y Chzi+!=(—1)1—z)"*

dZ 1—Z ’ = = )
n—1

ji=0
. ) n—1{—1
(iv) > CRz/=(z—-1) 3, Ck=0z/, I<k.
=0 j=0

J
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n—1 1
(v) ¥ COCH, =(—1) Y Chco 0<k<n-—1.
i=0

J+kn T J+kno
j=0

(vi) Define the coefficients ay,=1, 05,, &4,,... by the equation

el
Sinhn+1 x=xn+l Z a2i,nx2’
i=0

and for t=0,1, 2,... let

1 n—1 —1 i )
Y= C},’;’(f—" ) 0<k<n—1. (A.1)
1t 2
Then
&) =0 ifk+1tisoddorift<k (A2)
and
n—k)!
'Yl(ck-?— 2man = (27) Aom,ns 0 sm< m’ (A3)
(n—k)! (—1)"**
Vi amn =" Camn + 53—

221B2,
221-1—n+k)’

X Y o2t m=m, (A.4)

l=m

where mi= [(n+ 2 —k)/2], [u] denotes the integer part of u and B,,, denotes
a Bernoulli number (see Abramowitz and Stegun [1]).

Proof. (i) See Fyfe [9].

(i) See Swartz [11, 12] or Albasiny and Hoskins [3].

(iii), (iv) and (v) See Albasiny and Hoskins [3].

(vi) This property has been proved for » odd by Albasiny and Hoskins

[3] and by Lucas [10]. We show here how these proofs can be extended
to cover the case n even.

Using the properties (ii) and setting j= [(n — 2)/2], we show that

j 1\
1y =(1+(~1F*) ¥ C}f;)(j—"z )

j=0

giving C® =0 if k + 1 is odd.
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Taking t=k+2m and using the identity (z(d/dz))'(z')=1Z", (A.1)
becomes

y(k) =; (Zii. fram nil C(k)zj*("*l)ﬂ] .
k+2mn (k+2m)' dZ Pyt gn el

Moreover, the property (iii) implies that

(_l)k d k+2m(1__z)n+1 d n—k 1
y(k) = 7 z— —_| 7 — .
k+2mn (k+2m)! dZ Z(1/2)(n+ 1) dZ 1—2 st

Making the substitution z=e>, the operator z(d/dz) and i(d/dx) are
equivalent and z=1 correspond to x=0. Noting that 1/(1—e*)=
1(1 — coth x), we obtain

_ n+k k+2m
A ="—(_1)__2 [<i>
(k4 2m)! 2% | \dx

n—k
x {sinh”* Vx (dix) coth x}], x=0.

Since (see Abramowitz and Stegun [1])

o 2/
cothx= Y WBZ,xZ’”, x| <7
{=0 -

it follows that

d\"—*k (_1)""‘(n—k)! i 22132/ 2 1-n+k
<a> COthx_—F‘TI——+,§m2l(2l—l——n+k)!x

where 1= [(n+2—k)/2]. Then

d n—k o
(_1)n+ksinhn+1x(2;> cothx= z ﬁZm‘nxk+2m

m=0

where

ﬁZm,n=(n—k)! E2m,ns Osm<m,
= (n_k)’ aZm,n+(.—1)n+k

221B21

X Z a2m—2[,n ’ m Zrh
= AR~ 1—n+k)!

So the result follows by applying (d/dt)* **" and setting x =0. Q.E.D.
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