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Periodic even degree spline interpolants of a function f at the knots are con­
sidered. Existence and uniqueness results are proved, and error bounds of the form
II jlkl_s1k)11 00";; u,.kh2'+ I-k{ Ilfl2'+ 1)11 x, + Var(fl2'+ I»)} (k = 0'00" 2r) are obtained.
([) 1985 Academic Press, Inc.

1. INTRODUCTION

Let A = {Xj}~=o be a uniform partition of [a, b], a=xo< ... <xN=b,
and x j = a + ih, where h = (b - a)/N. An even degree spline is a function
SEC

2r
-

1[a,b] such that s restricted to [xj,Xi+I] is a polynomial of
degree at most 2r. It is a periodic even degree spline if S(k)(a) = s(k)(b) (k =
0'00" 2r - 1). In this paper we define a periodic even degree spline from its
nodal values s(x;) (i = 0'00" N).

Nice error bounds have been established for periodic odd degree spline
interpolation (e.g., see AhlbergetaI. [2], B. Swartz [11,12], Albasiny and
Hoskins [3], and recently, T. R. Lucas [10]). It appears that we can
obtain similar results for periodic even degree spline interpolation. In [7],
extending the results of Daniel [5] and de Boor [4], we have studied
periodic quadratic spline interpolation and showed that good results are
obtained when the partition is uniform. In [8] we have obtained similar
results for periodic quartic spline interpolation on a uniform partition. The
object of this paper is the study of periodic even degree spline interpolation
on a uniform partition. We show existence and uniqueness of periodic even
degree spline interpolants and obtain error bounds of the form

(k = 0'00" 2r).

These results are also extensions of those obtained by Meek [13].
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Throughout this paper we will use the following notations. If
g: [a, b] -+ R is a given function, we will write gj = g(xJ, Xj+ (1/2) =
(x j+x j+I)/2, gj+(I/2)=g(X j+(1/2»), g(k) is the kth derivative of g, g(O)=g
and Var( g) is the total variation of g on [a, b]. We also consider the
following function spaces: Ck[a, b], the spaces of functions with con­
tinuous derivatives through order k, C;[a, b], the spaces of functions
f E Ck [a, b], such that f{l)( a) = f{l)( b) for all 1= 0, ..., k, and &'k, the space of
all polynomials of degree at most k.

2. EXISTENCE OF EVEN DEGREE PERIODIC SPLINES

As previously defined, on each interval [Xj, Xj+ I] a periodic spline of
degree 2r can be written

2r ( )k
( ) _" (k) X-Xj

S X - ~ Sj k'
k=O .

(1)

(2)

and our first step is to relate the quantities S~k) (k = 1,..., 2r) to the quan­
tities Sj' This is done by the following fundamental relationship, proved by
Fyfe [9, Theorem 1],

2~ 1 C(O) (k) _ (2rh 2~ 1 C(k)
~ j,2r Sj+J- hk ~ J,2r Si+J

j=O J~O

for all k = 1,..., 2r - 1, where (2rh = (2r)!j(2r - k)!,

C(k) = V2r+ In2r-k
J,2r + when n= 2r- j

for k = 0,..., 2r - 1, V is the backward difference operator and z + =
(z + Izi )/2. Finally, for k = 2r we obtain directly from (1)

S(2r-I)_S(2r-l)
(2r) _ 1+ 1 1

Si - h (3)

(4)

If we consider (2) for i = -r + 1,..., N - r, and remember that indices
must be considered modulo N, we obtain the linear systems

C(O) (k) = (2r)k C(k)
2r S,j hk 2r S,j

for all k = 1,..., 2r - 1, where S~k) = (S&kl, S\k), ..., s<:~ I) and q~) is a band cir­
culant matrix with nonzero elements in a general row consisting of

C(k) C(k) C(k) C(k) C(k)
0,2r' l,2r"'" r-l,2r'"'' 2r-2,2r' 2r-l,2r

with the element C~~ 1,2r on the diagonal.
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Using the properties of the coefficients of the matrix q~) (see the Appen­
dix), we can prove the following result.

THEOREM 1. Let 11 = {x;};"= 0 be a uniform partition of [a, b]. A periodic
spline of degree 2r is uniquely determined by its nodal values {s; }f::-ol if and
only if N is odd. In this case

S(k)= (2rh (EC(O))-' EC(k)s
,1 hk 2r 2r j

where the matrix E of order N is

1
E=-

2

1 -1 1 -1 1

1 ~ -.1

-~~~~~:1
1 ~ -1

-1 1 -1 1

(5)

and Eq~) is a symmetric band circulant matrix of order N such that

I(
C(O) - 1 2r +2 ( - 1r

IE 2r) Iloo~22r+I(22r+2_1)'-B--
2r+ 2

(6)

where B 2r + 2 is a Bernoulli number (see Abramowitz and Stegun [1 J). If N is
even, the spline does not exist or is not uniquely determined.

Proof See Dubeau [6].

3. DERIVATION OF ERROR BOUNDS

Q.E.D.

Given a function f E c;r + 1 [a, bJ and a uniform partition 11 = {x;};"= 0' N
odd, of the interval [a, b]. We consider the periodic spline interpolant s of
degree 2r of f such that s(x;) = f(x;). On each interval [x;, X;+ IJ the kth
derivative (0 ~ k ~ 2r) of the remainder function e(x) = f(x) - s(x) can be
written

2r ( )'-k
e(k)(x) = " e(l) x-x; +R (f(2r+')·x.)(x) (7)

/::k I (l-k)! 2r-k , I



46

where
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The problem is then reduced to the study of the terms ejk l,

Let us introduce the following compact notation

Hence (2) becomes

for all k = I,..., 2r - l. So, for the error function we obtain

-'0 (k)=bOf(kl_ (2r)k -'kf
Vie I hk VI '

We are now able to prove the following lemma.

(8)

(9)

LEMMA 1. Let N be an odd integer, L1 = {Xi} f= °be a uniform partition of
[a, b] and f E c~r + 1[a, b]. Then

150 (k) _ 150R (f(2r + 1l. ) (2rh 15 kR (f(2r + 1). )
i e - i 2r-k 'Xi + r -(l/2) -7 i 2r 'Xi + r -(l/2)

for all k = 1,..., 2r - l.

Proof Consider the following Taylor expansions

f(kl(X) = p(k)(X) + R2r _ k (f(2r+ 1); X i + r -(l/2))(X) (10)

for all k = 0,..., 2r - 1, where

2r ( )l-k
(k)( )_ "f(/) x-X i + r -(1/2)

p X -l~k i+r-(l/2) (l-k!)

Using the notation (A.1) of the Appendix, we have

2r
150 (k) - " f(/) h l - k (0)

iP - L. i+r-(1/2) YI-k.2r
l~k
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and

2r
bk -" f(l) h' (k)iP- L.. i+r-(1/2) r',2r'

,~O

But from (A.2) and (A.3)

and the result follows from (8), (10) and (11).

47

(11)

Q.E.D.

In the next two theorems, we obtain bounds for the expressions
ejk) + ej':ll and ejk) - ej':lI' These bounds show us an interesting decom­
position of the bound for ejk).

THEOREM 2. Let N be an odd integer, L1 = {Xi} ~~ 0 be a uniform partition
of [a, b] and f E c;r+ 1[a, b]. Then there exist constants f3r.b independent of
the partition, such that

(12)

for all i = 0,..., N - 1 and k = 1,..., 2r - 1.

Proof If we write (9) as a linear system

(13 )

where e~k) = (e&k), elk), ..., er;~ 1) and br,k is a N-vector whose components are
given by

and if we use the right-hand side of (9), we have

(b ) - ~o R (f(2r+ 1). )r,k i- U i-r+l 2r-k ,X i +(l/2)

(2rh bk R (f(2r+ 1). )-7 i-r+ 1 2r , Xi+(1/2)

(14)

(15)

for all i = 0, 1,..., N - 1. So there exist constants IY.r,b independent of L1, such
that

640/44/1-4
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Now, since 1= E(I+ P) and q~) = Eq~l(I+ P), where the matrix E is
given by (5) and P is the permutation matrix of order N

P=

o 1

~,
o 1

we obtain

1 o

(I + P) e~k) = (Eq~)) -I br,k

and the result follows if we set fJr,k=rxr,k II(Eq~))-lllw' Q,E,D.

THEOREM 3. Let N be an odd integer, L1 = {Xi} ~~ 0 be a uniform partition
of [a, b ], f E c;r + 1[a, b] with f(2r + I) of bounded variation. Then there exist
constants fJr,k> independent of the partition, such that

le!k)-e(k) l~fJ h2r + 1 - k Var(f(2r+I))
l l + 1 -.....:::: r,k (16)

for all i = 0,..., N - 1 and k = 1,... , 2r - 1.

Proof From the system (13) and the relation (I - P) EC~r=
Eqp - P), it follows that

But

(17)

(I-P)E=

and (14) imply

~ -1~1~-1_;

-~~~ ~
1 .~ -1

-1 1 .. · -1 1 0

i+N-I

[(I-P)Ebr,kl= L (-1)j- i c5J_r+l e(k)
j=i+ 1

for all i = 0,..., N - 1.

(18)
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Using the fact that the partition is uniform and introducing the tran­
slation operator (Tj g)(x) = g(x + jh), we can easily show

for all k = 0,..., 2r - 1.
Hence, setting g = f(2r + 1) in (19) and using (15) and (18), we obtain

[( ) b ] - ~o (,I,. (2r)k ~k (,I,. )I-P E r,k i- u i_r+1 R 2r-k 'I',Xi+(1/2»)-YUi_r+1R2r 'I',X i +(l/2)

where

i+N-l
1jJ= I (_I)j-l T

i
_J(2r+I).

j~i+ 1

But

so there exist constants IXr,b independent of ,1, such that

and the result follows from (17) and (20).

(20)

Q.E.D.

It is now easy to obtain a global error bound for the remainder function.

THEOREM 4. Let N be an odd integer, ,1 = {Xi};"~O be a uniform partition
of [a, b], f E c;r + 1[a, b] with j<2r + 1) of bounded variation. Then there exist
constants (Jr,b independent of the partition, such that

for all k = 0,..., 2r.

Proof Inequalities (12) and (16) imply

for k = 1,.", 2r - 1. Moreover, from (3) it follows that

640/44/1-4 *
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and using (16) we obtain
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The result then follows from (7), (22) and (23).

(23)

Q.E.D.

Remark 1. From (9) it follows that the right-hand side of (8) is a linear
functional L k which vanishes for all p E ~r' Thus we can use the Peano ker­
nel theorem (see Davis [14]) to obtain

J?e(k) =rKk(t)/(2r+1)(t)dt
a

where

The notation Lk.x[(x - t)~] means that the functional Lk is applied to
(x - t)~ considered as a function of x. Using the following change of
variable, t = Xi + ()h, we get

where

So, the constants (f.r.k can be evaluated using the following expresion

for all k = 1,..., 2r - 1.

Remark 2. Following Lemma 1 and using (A.2), (A.3) and (A.4) we
can show that L k vanishes for all p E ~r+ 1 as long as k is even. In this case
we obtain

J?e(k) = rK:(t) /(2r+ 2)(t) dt
a
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(24)

In this case, if we consider fE C;r+2[a, b] with j<2r+2) of bounded
variation, we get

Ile~k)11 00 ~ f3~kh2r +2- k{ II j<2r +2)1100 + Var(j(2r+ 2»)}

for all k = 2"." 2r - 2, and where f3~k can be evaluate using (6) and (24).
In [15], Dikshit, Sharma and Tzimbalario extend the results of Lucas

[10] to the case of even order periodic spline interpolation at midknots. In
the same way, our results could be extended to odd order periodic spline
interpolation at midknots.

APPENDIX: PROPERTIES OF THE COEFFICIENTS q~)

In this appendix, we recall the properties of the coefficients q~) and
extend the last one.

PROPOSITION 1.. The coefficients q~) have the following properties.

and

(i) q~)+ 1= (n + 1- j) CJ~\n

+ U+ 1) q~), O~j~n, O~k~n -1,

C(k) =(_I)k+J(k)},k+ 1 j , O~j~k.

Ok) = C(k-I) - C(k-I).},k+ 1 }-I,k }.k

(ii) q~)=(-I)kC~~l_J.n' O~k~n-1.

n-I

(iii) L q~)zJ+I=(-I)k(l-zt+l

J=O

(iv)

x (z .:!..)n-k(_1),
dz l-z

n-I n-I-I
L q~)zJ=(z-I)' L q~~jzJ,
J~O j~O

O~k~n-1.

l~k.
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n-l n-l

(V) "C\OlC(kl =(_l)k" C(klC\O)
1... J,n J+k,n 1... J,n J+k,n'
j~O j~O

O~k~n-1.

(vi) Define the coefficients !lO,n = 1, !l2,n' Ct4,n"" by the equation

00

sinhn + 1 x=xn + 1
" Ct . X

2i
L. 2',n
i~O

and for t = 0, 1, 2,... let

1n

-

1
( 1)'(kl_ (k)' n-

y"n -l! j~O Cj,n J--2- ,

Then

O~k~n-1. (A.l)

and

y(k)=O
I,n if k + t is odd or if t < k (A.2)

(k) _(n-k)!
yk + 2m,n - 22m !l2m,n' O~m<m, (A.3)

m~m, (A.4)

where m= [(n + 2 - k )/2], [u] denotes the integer part of u and B 2m denotes
a Bernoulli number (see Abramowitz and Stegun [1]),

Proof (i) See Fyfe [9],

(ii) See Swartz [11,12] or Albasiny and Hoskins [3],

(iii), (iv) and (v) See Albasiny and Hoskins [3],

(vi) This property has been proved for n odd by Albasiny and Hoskins
[3] and by Lucas [10], We show here how these proofs can be extended
to cover the case n even.

Using the properties (ii) and setting J= [(n - 2)/2], we show that

t!y(k)=(l+(-l)k+l) f C\k)(i_
n

-
1
)'

~ 1... ~ 2
j=O

giving q:) = 0 if k + t is odd.
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Taking t=k+2m and using the identity (z(d/dz))I(Z') = [lzl, (A.1)
becomes

Moreover, the property (iii) implies that

Making the substitution z = e2X, the operator z(d/dz) and !(d/dx) are
equivalent and z = 1 correspond to x = O. Noting that 1/(1- e2x

) =
!( I - coth x), we obtain

(_l)n+k [( d )k+2myn 2m.n = (k + 2m)! 22m dx

x{sinhn+'x(;r-
k

cothX}} x=O.

Since (see Abramowitz and Stegun [1])

Ixl <n

it follows that

(
d)n-k (-l)n-k(n-k)' 00 221B• 21 21-I-n+k

dx cothx= Xn- k+1 +1~m21(21-I-n+k)!x

where m= [(n+2-k)/2]. Then

(
d )n-k 00

(-It+ksinhn+'x dx cothx= m~of32m,nXk+2m

where

f32m.n = (n - k)! rx2m.n' O~m<m,

= (n -k)! rx2m.n + (_l)n+k

m 221B
x"rx 21

I:-m 2m-21,n21(21_I_n+k)!' m~m.

So the result follows by applying (d/dt)k +2m and setting x = O. Q.E.D.
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