Periodic Even Degree Spline Interpolation on a Uniform Partition

François Dubeau and Jean Savoie
Département de mathématiques, Collège militaire royal de Saint-Jean, St.-Jean-sur-Richelieu, Québec JOJ IR0, Canada
Communicated by E. W. Cheney

Received September 12, 1983; revised June 13, 1984

Abstract

Periodic even degree spline interpolants of a function f at the knots are considered. Existence and uniqueness results are proved, and error bounds of the form $\left\|f^{(k)}-s^{(k)}\right\|_{\infty} \leqslant \sigma_{r, k} h^{2 r+1-k}\left\{\left\|f^{(2 r+1)}\right\|_{\infty}+\operatorname{Var}\left(f^{(2 r+1)}\right\}(k=0, \ldots, 2 r)\right.$ are obtained. (1) 1985 Academic Press, Inc.

1. Introduction

Let $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of [$\left.a, b\right], a=x_{0}<\cdots<x_{N}=b$, and $x_{i}=a+i h$, where $h=(b-a) / N$. An even degree spline is a function $s \in C^{2 r-1}[a, b]$ such that s restricted to $\left[x_{i}, x_{i+1}\right]$ is a polynomial of degree at most $2 r$. It is a periodic even degree spline if $s^{(k)}(a)=s^{(k)}(b)(k=$ $0, \ldots, 2 r-1)$. In this paper we define a periodic even degree spline from its nodal values $s\left(x_{i}\right)(i=0, \ldots, N)$.

Nice error bounds have been established for periodic odd degree spline interpolation (e.g., see Ahlberg et al. [2], B. Swartz [11, 12], Albasiny and Hoskins [3], and recently, T. R. Lucas [10]). It appears that we can obtain similar results for periodic even degree spline interpolation. In [7], extending the results of Daniel [5] and de Boor [4], we have studied periodic quadratic spline interpolation and showed that good results are obtained when the partition is uniform. In [8] we have obtained similar results for periodic quartic spline interpolation on a uniform partition. The object of this paper is the study of periodic even degree spline interpolation on a uniform partition. We show existence and uniqueness of periodic even degree spline interpolants and obtain error bounds of the form

$$
\left\|f^{(k)}-s^{(k)}\right\|_{\infty} \simeq O\left(h^{2 r+1-k}\right) \quad(k=0, \ldots, 2 r)
$$

These results are also extensions of those obtained by Meek [13].

Throughout this paper we will use the following notations. If $g:[a, b] \rightarrow R$ is a given function, we will write $g_{i}=g\left(x_{i}\right), x_{i+(1 / 2)}=$ $\left(x_{i}+x_{i+1}\right) / 2, g_{i+(1 / 2)}=g\left(x_{i+(1 / 2)}\right), g^{(k)}$ is the k th derivative of $g, g^{(0)}=g$ and $\operatorname{Var}(g)$ is the total variation of g on $[a, b]$. We also consider the following function spaces: $C^{k}[a, b]$, the spaces of functions with continuous derivatives through order $k, C_{p}^{k}[a, b]$, the spaces of functions $f \in C^{k}[a, b]$, such that $f^{(l)}(a)=f^{(l)}(b)$ for all $l=0, \ldots, k$, and \mathscr{P}_{k}, the space of all polynomials of degree at most k.

2. Existence of Even Degree Periodic Splines

As previously defined, on each interval $\left[x_{i}, x_{i+1}\right]$ a periodic spline of degree $2 r$ can be written

$$
\begin{equation*}
s(x)=\sum_{k=0}^{2 r} s_{i}^{(k)} \frac{\left(x-x_{i}\right)^{k}}{k!} \tag{1}
\end{equation*}
$$

and our first step is to relate the quantities $s_{i}^{(k)}(k=1, \ldots, 2 r)$ to the quantities s_{i}. This is done by the following fundamental relationship, proved by Fyfe [9, Theorem 1],

$$
\begin{equation*}
\sum_{j=0}^{2 r-1} C_{j, 2 r}^{(0)} s_{i+j}^{(k)}=\frac{(2 r)_{k}}{h^{k}} \sum_{j=0}^{2 r-1} C_{j, 2 r}^{(k)} s_{i+j} \tag{2}
\end{equation*}
$$

for all $k=1, \ldots, 2 r-1$, where $(2 r)_{k}=(2 r)!/(2 r-k)!$,

$$
C_{j, 2 r}^{(k)}=\nabla^{2 r+1} n_{+}^{2 r-k} \quad \text { when } \quad n=2 r-j
$$

for $k=0, \ldots, 2 r-1, \nabla$ is the backward difference operator and $z_{+}=$ $(z+|z|) / 2$. Finally, for $k=2 r$ we obtain directly from (1)

$$
\begin{equation*}
s_{i}^{(2 r)}=\frac{s_{i+1}^{(2 r-1)}-s_{i}^{(2 r-1)}}{h} \tag{3}
\end{equation*}
$$

If we consider (2) for $i=-r+1, \ldots, N-r$, and remember that indices must be considered modulo N, we obtain the linear systems

$$
\begin{equation*}
C_{2 r}^{(0)} s_{\Delta}^{(k)}=\frac{(2 r)_{k}}{h^{k}} C_{2 r}^{(k)} s_{\Delta} \tag{4}
\end{equation*}
$$

for all $k=1, \ldots, 2 r-1$, where $s_{A}^{(k)}=\left(s_{0}^{(k)}, s_{1}^{(k)}, \ldots, s_{N-1}^{(k)}\right)$ and $C_{2 r}^{(k)}$ is a band circulant matrix with nonzero elements in a general row consisting of

$$
C_{0,2 r}^{(k)}, C_{1,2 r}^{(k)}, \ldots, C_{r-1,2 r}^{(k)}, \ldots, C_{2 r-2,2 r}^{(k)}, C_{2 r-1,2 r}^{(k)}
$$

with the element $C_{r-1,2 r}^{(k)}$ on the diagonal.

Using the properties of the coefficients of the matrix $C_{2 r}^{(0)}$ (see the Appendix), we can prove the following result.

Theorem 1. Let $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of $[a, b]$. A periodic spline of degree $2 r$ is uniquely determined by its nodal values $\left\{s_{i}\right\}_{i=0}^{N-1}$ if and only if N is odd. In this case

$$
s_{4}^{(k)}=\frac{(2 r)_{k}}{h^{k}}\left(E C_{2 r}^{(0)}\right)^{-1} E C_{2 r}^{(k)} s_{A}
$$

where the matrix E of order N is

$$
E=\frac{1}{2}\left[\begin{array}{rrrrr}
1 \tag{5}\\
1 & -1 & -1 & 1 \\
1 \\
1 & 1 & \cdots & -1 & 1 \\
-1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

and $E C_{2 r}^{(0)}$ is a symmetric band circulant matrix of order N such that

$$
\begin{equation*}
\left\|\left(E C_{2 r}^{(0)}\right)^{-1}\right\|_{\infty} \leqslant \frac{2 r+2}{2^{2 r+1}\left(2^{2 r+2}-1\right)} \cdot \frac{(-1)^{r}}{B_{2 r+2}} \tag{6}
\end{equation*}
$$

where $B_{2 r+2}$ is a Bernoulli number (see Abramowitz and Stegun [1]). If N is even, the spline does not exist or is not uniquely determined.

Proof. See Dubeau [6].
Q.E.D.

3. Derivation of Error Bounds

Given a function $f \in C_{p}^{2 r+1}[a, b]$ and a uniform partition $\Delta=\left\{x_{i}\right\}_{i=0}^{N}, N$ odd, of the interval $[a, b]$. We consider the periodic spline interpolant s of degree $2 r$ of f such that $s\left(x_{i}\right)=f\left(x_{i}\right)$. On each interval $\left[x_{i}, x_{i+1}\right]$ the k th derivative $(0 \leqslant k \leqslant 2 r)$ of the remainder function $e(x)=f(x)-s(x)$ can be written

$$
\begin{equation*}
e^{(k)}(x)=\sum_{l=k}^{2 r} e_{i}^{(l)} \frac{\left(x-x_{i}\right)^{l-k}}{(l-k)!}+R_{2 r-k}\left(f^{(2 r+1)} ; x_{i}\right)(x) \tag{7}
\end{equation*}
$$

where

$$
R_{m}(g ; \alpha)(x)=\int_{\alpha}^{x} \frac{(x-\xi)^{m}}{m!} g(\xi) d \xi
$$

The problem is then reduced to the study of the terms $e_{i}^{(k)}$.
Let us introduce the following compact notation

$$
\delta_{i}^{k} g=\sum_{j=0}^{2 r-1} C_{j, 2 r}^{k)} g_{i+j}
$$

Hence (2) becomes

$$
\delta_{i}^{0} s^{(k)}=\frac{(2 r)_{k}}{h^{k}} \delta_{i}^{k} s
$$

for all $k=1, \ldots, 2 r-1$. So, for the error function we obtain

$$
\begin{equation*}
\delta_{i}^{0} e^{(k)}=\delta_{i}^{0} f^{(k)}-\frac{(2 r)_{k}}{h^{k}} \delta_{i}^{k} f \tag{8}
\end{equation*}
$$

We are now able to prove the following lemma.

Lemma 1. Let N be an odd integer, $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of $[a, b]$ and $f \in C_{p}^{2 r+1}[a, b]$. Then
$\delta_{i}^{0} e^{(k)}=\delta_{i}^{0} R_{2 r-k}\left(f^{(2 r+1)} ; x_{i+r-(1 / 2)}\right)-\frac{(2 r)_{k}}{h^{k}} \delta_{i}^{k} R_{2 r}\left(f^{(2 r+1)} ; x_{i+r-(1 / 2)}\right)$
for all $k=1, \ldots, 2 r-1$.
Proof. Consider the following Taylor expansions

$$
\begin{equation*}
f^{(k)}(x)=p^{(k)}(x)+R_{2 r-k}\left(f^{(2 r+1)} ; x_{i+r-(1 / 2)}\right)(x) \tag{10}
\end{equation*}
$$

for all $k=0, \ldots, 2 r-1$, where

$$
p^{(k)}(x)=\sum_{l=k}^{2 r} f_{i+r-(1 / 2)}^{(l)} \frac{\left(x-x_{i+r-(1 / 2)}\right)^{l-k}}{(l-k!)} .
$$

Using the notation (A.1) of the Appendix, we have

$$
\delta_{i}^{0} p^{(k)}=\sum_{l=k}^{2 r} f_{i+r-(1 / 2)^{(l)}} h^{l-k_{\gamma}} \gamma_{l-k, 2 r}^{(0)}
$$

and

$$
\delta_{i}^{k} p=\sum_{l=0}^{2 r} f_{i+r-(1 / 2)}^{(l)} h^{l} \gamma_{l, 2 r}^{(k)} .
$$

But from (A.2) and (A.3)

$$
\begin{equation*}
\delta_{i}^{0} p^{(k)}=\frac{(2 r)_{k}}{h^{k}} \delta_{i}^{k} p \tag{11}
\end{equation*}
$$

and the result follows from (8), (10) and (11). Q.E.D.

In the next two theorems, we obtain bounds for the expressions $e_{i}^{(k)}+e_{i+1}^{(k)}$ and $e_{i}^{(k)}-e_{i+1}^{(k)}$. These bounds show us an interesting decomposition of the bound for $e_{i}^{(k)}$.

Theorem 2. Let N be an odd integer, $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of $[a, b]$ and $f \in C_{p}^{2 r+1}[a, b]$. Then there exist constants $\beta_{r, k}$, independent of the partition, such that

$$
\begin{equation*}
\left|e_{i}^{(k)}+e_{i+1}^{(k)}\right| \leqslant \beta_{r, k} h^{2 r+1-k}\left\|f^{(2 r+1)}\right\|_{\infty} \tag{12}
\end{equation*}
$$

for all $i=0, \ldots, N-1$ and $k=1, \ldots, 2 r-1$.
Proof. If we write (9) as a linear system

$$
\begin{equation*}
C_{2 r}^{(0)} e_{d}^{(k)}=b_{r, k} \tag{13}
\end{equation*}
$$

where $e_{\Delta}^{(k)}=\left(e_{0}^{(k)}, e_{1}^{(k)}, \ldots, e_{N-1}^{(k)}\right)$ and $b_{r, k}$ is a N-vector whose components are given by

$$
\begin{equation*}
\left(b_{r, k}\right)_{i}=\delta_{i-r+1}^{0} e^{(k)} \tag{14}
\end{equation*}
$$

and if we use the right-hand side of (9), we have

$$
\begin{align*}
\left(b_{r, k}\right)_{i}= & \delta_{i-r+1}^{0} R_{2 r-k}\left(f^{(2 r+1)} ; x_{i+(1 / 2)}\right) \\
& -\frac{(2 r)_{k}}{h^{k}} \delta_{i-r+1}^{k} R_{2 r}\left(f^{(2 r+1)} ; x_{i+(1 / 2)}\right) \tag{15}
\end{align*}
$$

for all $i=0,1, \ldots, N-1$. So there exist constants $\alpha_{r, k}$, independent of Δ, such that

$$
\left\|b_{r, k}\right\|_{\infty} \leqslant \alpha_{r, k} h^{2 r+1-k}\left\|f^{(2 r+1)}\right\|_{\infty}
$$

Now, since $I=E(I+P)$ and $C_{2 r}^{(0)}=E C_{2 r}^{(0)}(I+P)$, where the matrix E is given by (5) and P is the permutation matrix of order N

we obtain

$$
(I+P) e_{A}^{(k)}=\left(E C_{2 r}^{(0)}\right)^{-1} b_{r, k}
$$

and the result follows if we set $\beta_{r, k}=\alpha_{r, k}\left\|\left(E C_{2 r}^{(0)}\right)^{-1}\right\|_{\infty}$.
Q.E.D.

Theorem 3. Let N be an odd integer, $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of $[a, b], f \in C_{p}^{2 r+1}[a, b]$ with $f^{(2 r+1)}$ of bounded variation. Then there exist constants $\beta_{r, k}$, independent of the partition, such that

$$
\begin{equation*}
\left|e_{i}^{(k)}-e_{i+1}^{(k)}\right| \leqslant \beta_{r, k} h^{2 r+1-k} \operatorname{Var}\left(f^{(2 r+1)}\right) \tag{16}
\end{equation*}
$$

for all $i=0, \ldots, N-1$ and $k=1, \ldots, 2 r-1$.
Proof. From the system (13) and the relation $(I-P) E C_{2 r}^{0}=$ $E C_{2 r}^{0}(I-P)$, it follows that

$$
\begin{equation*}
(I-P) e_{\Delta}^{(k)}=\left(E C_{2 r}^{0}\right)^{-1}(I-P) E b_{r, k} . \tag{17}
\end{equation*}
$$

But

and (14) imply

$$
\begin{equation*}
\left[(I-P) E b_{r, k}\right]_{i}=\sum_{j=i+1}^{i+N-1}(-1)^{j-i} \delta_{j-r+1}^{0} e^{(k)} \tag{18}
\end{equation*}
$$

for all $i=0, \ldots, N-1$.

Using the fact that the partition is uniform and introducing the translation operator $\left(T_{j} g\right)(x)=g(x+j h)$, we can easily show

$$
\begin{equation*}
\delta_{j-r+1}^{k} R_{m}\left(g ; x_{j+(1 / 2)}\right)=\delta_{i-r+1}^{k} R_{m}\left(T_{j-i} g ; x_{i+(1 / 2)}\right) \tag{19}
\end{equation*}
$$

for all $k=0, \ldots, 2 r-1$.
Hence, setting $g=f^{(2 r+1)}$ in (19) and using (15) and (18), we obtain

$$
\left[(I-P) E b_{r, k}\right]_{i}=\delta_{i-r+1}^{0} R_{2 r-k}\left(\psi ; x_{i+(1 / 2)}\right)-\frac{(2 r)_{k}}{h^{k}} \delta_{i-r+1}^{k} R_{2 r}\left(\psi ; x_{i+(1 / 2)}\right)
$$

where

$$
\psi=\sum_{j=i+1}^{i+N-1}(-1)^{j-1} T_{j-i} f^{(2 r+1)} .
$$

But

$$
|\psi(x)| \leqslant \operatorname{Var}\left(f^{(2 r+1)}\right)
$$

so there exist constants $\alpha_{r, k}$, independent of Δ, such that

$$
\begin{equation*}
\left\|(I-P) E b_{r, k}\right\|_{\infty} \leqslant \alpha_{r, k} h^{2 r+1-k} \operatorname{Var}\left(f^{(2 r+1)}\right) \tag{20}
\end{equation*}
$$

and the result follows from (17) and (20).
It is now easy to obtain a global error bound for the remainder function.

Theorem 4. Let N be an odd integer, $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be a uniform partition of $[a, b], f \in C_{p}^{2 r+1}[a, b]$ with $f^{(2 r+1)}$ of bounded variation. Then there exist constants $\sigma_{r, k}$, independent of the partition, such that

$$
\begin{equation*}
\left\|e^{(k)}\right\|_{\infty} \leqslant \sigma_{r, k} h^{2 r+1-k}\left\{\left\|f^{(2 r+1)}\right\|_{\infty}+\operatorname{Var}\left(f^{(2 r+1)}\right)\right\} \tag{21}
\end{equation*}
$$

for all $k=0, \ldots, 2 r$.
Proof. Inequalities (12) and (16) imply

$$
\begin{equation*}
\left\|e_{A}^{(k)}\right\|_{\infty} \leqslant \frac{\beta_{r, k}}{2} h^{2 r+1-k}\left\{\left\|f^{(2 r+1)}\right\|_{\infty}+\operatorname{Var}\left(f^{(2 r+1)}\right)\right\} . \tag{22}
\end{equation*}
$$

for $k=1, \ldots, 2 r-1$. Moreover, from (3) it follows that

$$
e_{i}^{(2 r)}=\frac{e_{i+1}^{(2 r-1)}-e_{i}^{(2 r-1)}}{h}-\frac{1}{h} \int_{x_{i}}^{x_{i+1}}\left(x_{i+1}-\xi\right) f^{(2 r+1)}(\xi) d \xi
$$

and using (16) we obtain

$$
\begin{equation*}
\left|e_{i}^{(2 r)}\right| \leqslant \beta_{r, 2 r-1} h \operatorname{Var}\left(f^{(2 r+1)}\right)+\frac{h}{2}\left\|f^{(2 r+1)}\right\|_{\infty} \tag{23}
\end{equation*}
$$

The result then follows from (7), (22) and (23).
Q.E.D.

Remark 1. From (9) it follows that the right-hand side of (8) is a linear functional L_{k} which vanishes for all $p \in \mathscr{P}_{2 r}$. Thus we can use the Peano kernel theorem (see Davis [14]) to obtain

$$
\delta_{i}^{0} e^{(k)}=\int_{a}^{b} K_{k}(t) f^{(2 r+1)}(t) d t
$$

where

$$
K_{k}(t)=\frac{1}{(2 r)!} L_{k, x}\left[(x-t)_{+}^{2 r}\right] .
$$

The notation $L_{k, x}\left[(x-t)_{+}^{2 r}\right]$ means that the functional L_{k} is applied to $(x-t)_{+}^{2 r}$ considered as a function of x. Using the following change of variable, $t=x_{i}+\theta h$, we get

$$
\delta_{i}^{0} e^{(k)}=h^{2 r+1-k} \int_{0}^{2 r-1} \bar{K}_{k}(\theta) f^{(2 r+1)}\left(x_{i}+\theta h\right) d \theta
$$

where

$$
\bar{K}_{k}(\theta)=\frac{1}{(2 r-k)!}\left[\sum_{j=0}^{2 r-1} C_{j, 2 r}^{(0)}(j-\theta)_{+}^{2 r-k}-\sum_{j=0}^{2 r-1} C_{j, 2 r}^{(k)}(j-\theta)_{+}^{2 r}\right] .
$$

So, the constants $\alpha_{r, k}$ can be evaluated using the following expresion

$$
\alpha_{r, k}=\int_{0}^{2 r-1}\left|\bar{K}_{k}(\theta)\right| d \theta
$$

for all $k=1, \ldots, 2 r-1$.
Remark 2. Following Lemma 1 and using (A.2), (A.3) and (A.4) we can show that L_{k} vanishes for all $p \in \mathscr{P}_{2 r+1}$ as long as k is even. In this case we obtain

$$
\delta_{i}^{0} e^{(k)}=\int_{a}^{b} K_{k}^{*}(t) f^{(2 r+2)}(t) d t
$$

where

$$
\begin{equation*}
K_{k}^{*}(t)=\frac{1}{(2 r+1)!} L_{k, x}\left[(x-t)_{+}^{2 r+1}\right] . \tag{24}
\end{equation*}
$$

In this case, if we consider $f \in C_{p}^{2 r+2}[a, b]$ with $f^{(2 r+2)}$ of bounded variation, we get

$$
\left\|e_{\Delta}^{(k)}\right\|_{\infty} \leqslant \beta_{r, k}^{*} h^{2 r+2-k}\left\{\left\|f^{(2 r+2)}\right\|_{\infty}+\operatorname{Var}\left(f^{(2 r+2)}\right)\right\}
$$

for all $k=2, \ldots, 2 r-2$, and where $\beta_{r, k}^{*}$ can be evaluate using (6) and (24).
In [15], Dikshit, Sharma and Tzimbalario extend the results of Lucas [10] to the case of even order periodic spline interpolation at midknots. In the same way, our results could be extended to odd order periodic spline interpolation at midknots.

APPENDIX: Properties of the Coefficients $C_{j, n}^{(k)}$

In this appendix, we recall the properties of the coefficients $C_{j, n}^{(k)}$ and extend the last one.

Proposition 1.. The coefficients $C_{j, n}^{(k)}$ have the following properties.

$$
\begin{align*}
C_{j, n+1}^{(k)}= & (n+1-j) C_{j-1, n}^{(k)} \tag{i}\\
& +(j+1) C_{j, n}^{(k)}, \quad 0 \leqslant j \leqslant n, \quad 0 \leqslant k \leqslant n-1,
\end{align*}
$$

and

$$
C_{j, k+1}^{(k)}=(-1)^{k+j}\binom{k}{j}, \quad 0 \leqslant j \leqslant k
$$

Since $\binom{k}{j}=\binom{k-1}{j}+\binom{k-1}{j-1}$ it follows that

$$
C_{j, k+1}^{(k)}=C_{j-1, k}^{(k-1)}-C_{j, k}^{(k-1)} .
$$

$$
\begin{equation*}
C_{j, n}^{(k)}=(-1)^{k} C_{n-1-j, n}^{(k)}, \quad 0 \leqslant k \leqslant n-1 . \tag{ii}
\end{equation*}
$$

(iii) $\sum_{j=0}^{n-1} C_{j, n}^{(k)} z^{j+1}=(-1)^{k}(1-z)^{n+1}$

$$
\times\left(z \frac{d}{d z}\right)^{n-k}\left(\frac{1}{1-z}\right), \quad 0 \leqslant k \leqslant n-1 .
$$

$$
\begin{equation*}
\sum_{j=0}^{n-1} C_{j, n}^{(k)} z^{j}=(z-1)^{l^{\prime}} \sum_{j=0}^{n-l-1} C_{j, n-l}^{(k-l)} z^{j}, \quad l \leqslant k . \tag{iv}
\end{equation*}
$$

(v) $\sum_{j=0}^{n-1} C_{j, n}^{(0)} C_{j+k, n}^{(k)}=(-1)^{k} \sum_{j=0}^{n-1} C_{j, n}^{(k)} C_{j+k, n}^{(0)}, \quad 0 \leqslant k \leqslant n-1$.
(vi) Define the coefficients $\alpha_{0, n}=1, \alpha_{2, n}, \alpha_{4, n}, \ldots$ by the equation

$$
\sinh ^{n+1} x=x^{n+1} \sum_{i=0}^{\infty} \alpha_{2 i, n} x^{2 i}
$$

and for $t=0,1,2, \ldots$ let

$$
\begin{equation*}
\gamma_{t, n}^{(k)}=\frac{1}{t!} \sum_{j=0}^{n-1} C_{j, n}^{(k)}\left(j-\frac{n-1}{2}\right)^{t}, \quad 0 \leqslant k \leqslant n-1 \tag{A.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\gamma_{t, n}^{(k)}=0 \quad \text { if } k+t \text { is odd or if } t<k \tag{A.2}
\end{equation*}
$$

and

$$
\begin{align*}
& \gamma_{k+2 m, n}^{(k)}=\frac{(n-k)!}{2^{2 m}} \alpha_{2 m, n}, \quad 0 \leqslant m<\hat{m}, \tag{A.3}\\
& \gamma_{k+2 m, n}^{(k)}= \frac{(n-k)!}{2^{2 m}} \alpha_{2 m, n}+\frac{(-1)^{n+k}}{2^{2 m}} \\
& \times \sum_{l=\hat{m}}^{m} \alpha_{2 m-2 l, n} \frac{2^{2 l} B_{2 l}}{2 l(2 l-1-n+k)!}, \quad m \geqslant \hat{m} \tag{A.4}
\end{align*}
$$

where $\hat{m}=[(n+2-k) / 2],[u]$ denotes the integer part of u and $B_{2 m}$ denotes a Bernoulli number (see Abramowitz and Stegun [1]).

Proof. (i) See Fyfe [9].
(ii) See Swartz [11, 12] or Albasiny and Hoskins [3].
(iii), (iv) and (v) See Albasiny and Hoskins [3].
(vi) This property has been proved for n odd by Albasiny and Hoskins [3] and by Lucas [10]. We show here how these proofs can be extended to cover the case n even.

Using the properties (ii) and setting $\hat{\jmath}=[(n-2) / 2]$, we show that

$$
t!\gamma_{t, n}^{(k)}=\left(1+(-1)^{k+t}\right) \sum_{j=0}^{j} C_{j, n}^{(k)}\left(j-\frac{n-1}{2}\right)^{t}
$$

giving $C_{j, n}^{(k)}=0$ if $k+t$ is odd.

Taking $t=k+2 m$ and using the identity $(z(d / d z))^{t}\left(z^{l}\right)=l^{l} z^{l}$, (A.1) becomes

$$
\gamma_{k+2 m, n}^{(k)}=\frac{1}{(k+2 m)!}\left[\left(z \frac{d}{d z}\right)^{k+2 m} \sum_{j=0}^{n-1} C_{j, n}^{(k)} z^{j-(n-1) / 2}\right]_{z=1}
$$

Moreover, the property (iii) implies that

$$
\gamma_{k+2 m, n}^{(k)}=\frac{(-1)^{k}}{(k+2 m)!}\left[\left(z \frac{d}{d z}\right)^{k+2 m} \frac{(1-z)^{n+1}}{z^{(1 / 2)(n+1)}}\left(z \frac{d}{d z}\right)^{n-k}\left(\frac{1}{1-z}\right)\right]_{z=1}
$$

Making the substitution $z=e^{2 x}$, the operator $z(d / d z)$ and $\frac{1}{2}(d / d x)$ are equivalent and $z=1$ correspond to $x=0$. Noting that $1 /\left(1-e^{2 x}\right)=$ $\frac{1}{2}(1-\operatorname{coth} x)$, we obtain

$$
\begin{aligned}
\gamma_{k+2 m, n}^{(k)}= & \frac{(-1)^{n+k}}{(k+2 m)!2^{2 m}}\left[\left(\frac{d}{d x}\right)^{k+2 m}\right. \\
& \left.\times\left\{\sinh ^{n+1} x\left(\frac{d}{d x}\right)^{n-k} \operatorname{coth} x\right\}\right], \quad x=0
\end{aligned}
$$

Since (see Abramowitz and Stegun [1])

$$
\operatorname{coth} x=\sum_{l=0}^{\infty} \frac{2^{2 l}}{(2 l)!} B_{2 l} x^{2 l-1}, \quad|x|<\pi
$$

it follows that

$$
\left(\frac{d}{d x}\right)^{n-k} \operatorname{coth} x=\frac{(-1)^{n-k}(n-k)!}{x^{n-k+1}}+\sum_{l=\dot{m}}^{\infty} \frac{2^{2 l} B_{2 l}}{2 l(2 l-1-n+k)!} x^{2 l-1-n+k}
$$

where $\hat{m}=[(n+2-k) / 2]$. Then

$$
(-1)^{n+k} \sinh ^{n+1} x\left(\frac{d}{d x}\right)^{n-k} \operatorname{coth} x=\sum_{m=0}^{\infty} \beta_{2 m, n} x^{k+2 m}
$$

where

$$
\begin{aligned}
\beta_{2 m, n}= & (n-k)!\alpha_{2 m, n}, \quad 0 \leqslant m<\hat{m} \\
= & (n-k)!\alpha_{2 m, n}+(-1)^{n+k} \\
& \times \sum_{l=m}^{m} \alpha_{2 m-2 l, n} \frac{2^{2 l} B_{2 l}}{2 l(2 l-1-n+k)!}, \quad m \geqslant \hat{m} .
\end{aligned}
$$

So the result follows by applying $(d / d t)^{k+2 m}$ and setting $x=0$. Q.E.D.

References

1. M. Abramowitz and J. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1965.
2. J. L. Ahlberg, E. N. Nilson, and J. L. Walsh, "The Theory of Splines and Their Applications," Academic Press, New York, 1967.
3. E. L. Albasiny and W. D. Hoskins, Explicit error bounds for periodic splines of odd order on a uniform mesh, J. Inst. Math. Appl. 12 (1973), 303-318.
4. C. DE BOOR, Quadratic spline interpolation and the sharpness of Lebesque's inequality, J. Approx. Theory 17 (1976), 348-358.
5. J. W. Daniel, Constrained approximation and Hermite interpolation with smooth quadratic splines: Some negative results, J. Approx. Theory 17 (1976), 135-149.
6. F. Dubeau, "On Band Circulant Matrices in the Periodic Spline Interpolation Theory," Collège militaire royal de Saint-Jean, St-Jean-sur-Richelieu, Québec, Canada, June 1983.
7. F. Dubeau and J. Savoie, Periodic quadratic spline interpolation, J. Approx. Theory 39 (1983), 77-88.
8. F. Dubeau and J. Savoie, Periodic quartic spline with equi-spaced knots, IMA J. Numer. Anal., in press.
9. D. J. Fyfe, Linear dependence relations connecting equal interval N th degree splines and their derivatives, J. Inst. Math. Appl. 7 (1971), 398-406.
10. T. R. Lucas, Asymptotic expansions for interpolating periodic splines, Siam J. Numer. Anal. 19 (1982), 1051-1066.
11. B. SWartz, $O\left(h^{2 n+2-1}\right)$ bounds on some spline interpolation errors, Bull. Amer. Math. Soc. 74 (1968), 1072-1078.
12. B. Swartz, " $O\left(h^{2 n+2-l}\right)$ Bounds on Some Spline interpolation Errors," LA-3886, Los Alamos Scientific Laboratory, Los Alamos, N.M. 1968.
13. D. Meek, Some new linear relations for even degree polynomial splines on a uniform mesh, BIT 20 (1980), 382-384.
14. P. J. Davis, "Interpolation and Approximation," Dover, New York, 1975.
15. H. P. Dikshit, A. Sharma, and J. Tzimbalario, Asymptotic error expansions for spline interpolation, Canad. Math. Bull. 27 (1984), 337-344.
